Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves

Author:

Wang JinghuaORCID,Li XiangORCID,Wang Wancheng,Wang FanORCID,Liu Quancheng,Yan Lei

Abstract

Tea polyphenols, amino acids, soluble sugars, and other ingredients in fresh tea leaves are the key parameters of tea quality. In this research, a tea leaf ingredient estimation sensor was developed based on a multi-channel spectral sensor. The experiment showed that the device could effectively acquire 700–1000 nm spectral data of tea tree leaves and could display the ingredients of leaf samples in real time through the visual interactive interface. The spectral data of Fuding white tea tree leaves acquired by the detection device were used to build an ingredient content prediction model based on the ridge regression model and random forest algorithm. As a result, the prediction model based on the random forest algorithm with better prediction performance was loaded into the ingredient detection device. Verification experiment showed that the root mean square error (RMSE) and determination coefficient (R2) in the prediction were, respectively, as follows: moisture content (1.61 and 0.35), free amino acid content (0.16 and 0.79), tea polyphenol content (1.35 and 0.28), sugar content (0.14 and 0.33), nitrogen content (1.15 and 0.91), and chlorophyll content (0.02 and 0.97). As a result, the device can predict some parameters with high accuracy (nitrogen, chlorophyll, free amino acid) but some of them with lower accuracy (moisture, polyphenol, sugar) based on the R2 values. The tea leaf ingredient estimation sensor could realize rapid non-destructive detection of key ingredients affecting tea quality, which is conducive to real-time monitoring of the current quality of tea leaves, evaluating the status during tea tree growth, and improving the quality of tea production. The application of this research will be helpful for the automatic management of tea plantations.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3