A Review of Engine’s Performance When Supercharging by a Pressure Wave Supercharger

Author:

Costiuc Iuliana,Chiru Anghel,Costiuc LiviuORCID

Abstract

Improving the performance of internal combustion engines (ICE), together with lowering emissions, are the main targets for specialists in the automotive field. One option for increasing engine efficiency is creating a considerable amount of boost for the inlet combustion air by means of supercharging. In addition to common turbochargers, an alternative solution that has interested researchers for almost a century is the pressure wave supercharger (PWS). This paper is, at first, a complimentary tribute to most of the researchers that studied, experimented with and improved PW supercharging technology from the 50′s to the present. Second, this review emphasizes the performance achieved by ICEs when using PW supercharging, highlighting the limits of these main parameters in different operating conditions, based on the main reported results in the literature. It also provides an overview of PW supercharging technology, with its main advantages and disadvantages and suggests some technical solutions or geometric adjustments to improve its operation. Even though in recent years this technology has registered a decrease of interest, there are still preoccupations, especially in the aeronautical industry, justified by the profitability and simplicity of PW devices. The results of this theoretical work can be exploited practically in PWS design and applications.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference99 articles.

1. Cycles and Thermal System Integration Issues of Ultra-Micro Gas Turbines;Nagashima,2005

2. Performance Enhancement of Microturbine Engines Topped With Wave Rotors

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3