Study on Correction Method of Internal Joint Operation Curve Based on Unsteady Flow

Author:

Yin Sheng,Ni Jimin,Fan Houchuan,Shi Xiuyong,Huang Rong

Abstract

The turbocharger, a key component in a vehicle’s powertrain, results in insufficient accuracy if it does not fully consider the unsteady flow effects of the intake and exhaust systems. Based on the difference between the turbocharger’s actual operating performance with unsteady flow and the corresponding steady flow performance, unsteady flow correction concepts and correction methods for the compressor and turbine were put forward, and the correction of the internal joint operation curve was investigated. The results show that when unsteady correction coefficients were added to both ends of the turbocharger and the optimized structure was used at both ends, the original turbocharger’s surge margin was reduced by 4.6% to 11.8%, and that of the optimized turbocharger was reduced by 15.2% to 21.9% in the medium–low-speed range. Meanwhile, the unsteady flow energy utilization coefficient of the optimized turbocharger was more than 14.5% higher than that of the original turbocharger in the medium–low speed range, and the energy utilization advantage was obvious. It indicated that the optimized turbocharger was working earlier, and the engine’s medium–low-speed admission performance has been obviously improved. Therefore, compared with the steady curve, the corrected unsteady curve was closer to the actual engine performance.

Funder

National Natural Science Foundation of China youth Science Foundation project

Nanchang Intelligent New Energy Vehicle Research Institute Foresight Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Drivers in CO2 emissions variation: A decomposition analysis for 33 world countries;Energy,2016

2. Do drivers of CO2 emission growth alter overtime and by the stage of economic development?;Energy Policy,2020

3. Analysis and modelling of the pollutant emissions from European cars regarding the driving characteristics and test cycles;Atmos. Environ.,2009

4. The of European passenger car characteristics 2000–2010 and its effects on real-world CO2 emissions and CO2 reduction policy;Energy Policy,2012

5. Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation;Energy,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3