Microstructure of Structural Lightweight Concrete Incorporating Coconut Shell as a Partial Replacement of Brick Aggregate and Its Influence on Compressive Strength

Author:

Bari Hamidul,Safiuddin Md.,Salam Md. AbdusORCID

Abstract

In this study, coconut shell aggregate (CSA) was used in brick aggregate concrete (BAC) to produce structural lightweight concrete. Various BACs containing CSA (CSBACs) were prepared based on the volumetric mix ratio of 1:1.5:3 (cement:fine aggregate:coarse aggregate). CSA was used substituting 0−15% of brick aggregate (BA) by weight. The concrete mixes were designed based on the weight-based water to cement (w/c) ratios of 0.45, 0.50, and 0.55. All the freshly mixed concretes were tested for their workability with respect to slump. In addition, the freshly mixed concretes made with the w/c ratio of 0.50 were examined for their wet density and air content. The hardened concretes were tested for their dry density, compressive strength, and microstructural characteristics (e.g., microcrack, micropore, fissure). The microstructure of CSBACs was investigated by a scanning electron microscope (SEM). In addition, the fissure width between the cement paste and CSA was measured from the SEM images using “ImageJ” software. The correlation between the compressive strength and fissure width of CSBAC was also examined. Test results showed that the air content of CSBACs including 5–15% CSA was higher than that of the control concrete (0% CSA). In addition, the density and compressive strength of concrete decreased with the increased CSA content. Above all, the most interesting finding of this study was the presence of fissures in the interfacial transition zone between the cement paste and CSA of CSBAC. The fissure width gradually increased with the increase in CSA content and thus decreased the compressive strength of concrete. However, the fissure width decreased with the increased curing age of concrete and therefore the compressive strength of CSBAC was enhanced at later ages. Moreover, a good correlation between the compressive strength and fissure width of CSBAC was observed in this study.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference59 articles.

1. Food and Agricultural Data,2019

2. Krishi Projukti Hatboi (Handbook on Agro-Technology),2000

3. Experimental Analysis of the Use of Coconut Shell as Coarse Aggregate

4. Exploratory study of coconut shell as coarse aggregate in concrete;Abubakar;J. Eng. Appl. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3