Thermal Conductivity of Coconut Shell-Incorporated Concrete: A Systematic Assessment via Theory and Experiment

Author:

Mhaya Akram M.,Shahidan Shahiron,Algaifi Hassan Amer,Zuki Sharifah Salwa Mohd,Benjeddou OmraneORCID,Ibrahim Mohd Haziman Wan,Huseien Ghasan FahimORCID

Abstract

To minimize the energy consumption and adverse impact of excessive waste accumulation on the environment, coconut shell (CA) became a potential (partial) replacement agent for fine aggregates in structural concrete production. Thus, systematic experimental and theoretical studies are essential to determine the thermal and structural properties of such concrete containing optimum level of CA. In this view, an artificial neural network (ANN) model, gene expression programming (GEP) model, and response surface method (RS) were used to predict and optimize the desired engineering characteristics of some concrete mixes designed with various levels of CA inclusion. Furthermore, the proposed model’s performance was assessed in terms of different statistical parameters calculated using ANOVA. The results revealed that the proposed concrete mix made using 53% of CA as a partial replacement of fine aggregate achieved an optimum density of 2246 kg/m3 and thermal conductivity of 0.5952 W/mK, which was lower than the control specimen (0.79 W/mK). The p-value of the optimum concrete mix was less than 0.0001 and the F-value was over 147.47, indicating the significance of all models. It is asserted that ANN, GEP, and RSM are accurate and reliable, and can further be used to predict a strong structural–thermal correlation with minimal error. In brief, the specimen composed with 53% of CA as a replacement for fine aggregate may be beneficial to develop environmentally amiable green structural concrete.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3