Alteration of Structure and Characteristics of Concrete with Coconut Shell as a Substitution of a Part of Coarse Aggregate

Author:

Stel’makh Sergey A.1ORCID,Beskopylny Alexey N.2ORCID,Shcherban’ Evgenii M.3ORCID,Mailyan Levon R.1,Meskhi Besarion4ORCID,Shilov Alexandr A.1ORCID,El’shaeva Diana1,Chernil’nik Andrei1ORCID,Kurilova Svetlana5

Affiliation:

1. Department of Unique Buildings and Constructions Engineering, Don State Technical University, 344003 Rostov-on-Don, Russia

2. Department of Transport Systems, Faculty of Roads and Transport Systems, Don State Technical University, 344003 Rostov-on-Don, Russia

3. Department of Engineering Geology, Bases and Foundations, Don State Technical University, 344003 Rostov-on-Don, Russia

4. Department of Life Safety and Environmental Protection, Faculty of Life Safety and Environmental Engineering, Don State Technical University, 344003 Rostov-on-Don, Russia

5. Department of Building Materials, Don State Technical University, 344003 Rostov-on-Don, Russia

Abstract

One of the most promising ways to solve the problem of reducing the rate of depletion of natural non-renewable components of concrete is their complete or partial replacement with renewable plant counterparts that are industrial and agricultural waste. The research significance of this article lies in the determination at the micro- and macro-levels of the principles of the relationship between the composition, the process of structure formation and the formation of properties of concrete based on coconut shells (CSs), as well as the substantiation at the micro- and macro-levels of the effectiveness of such a solution from the point of view of fundamental and applied materials science. The aim of this study was to solve the problem of substantiating the feasibility of concrete consisting of a mineral cement–sand matrix and aggregate in the form of crushed CS, as well as finding a rational combination of components and studying the structure and characteristics of concrete. Test samples were manufactured with a partial substitution of natural coarse aggregate with CS in an amount from 0% to 30% in increments of 5% by volume. The following main characteristics have been studied: density, compressive strength, bending strength and prism strength. The study used regulatory testing and scanning electron microscopy. The density of concrete decreased to 9.1% with increasing the CS content to 30%. The highest values for the strength characteristics and coefficient of construction quality (CCQ) were recorded for concretes containing 5% CS: compressive strength—38.0 MPa, prism strength—28.9 MPa, bending strength—6.1 MPa and CCQ—0.01731 MPa × m3/kg. The increase in compressive strength was 4.1%, prismatic strength—4.0%, bending strength—3.4% and CCQ—6.1% compared with concrete without CS. Increasing the CS content from 10% to 30% inevitably led to a significant drop in the strength characteristics (up to 42%) compared with concrete without CS. Analysis of the microstructure of concrete containing CS instead of part of the natural coarse aggregate revealed that the cement paste penetrates into the pores of the CS, thereby creating good adhesion of this aggregate to the cement–sand matrix.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3