Sustainable Alternate Materials for Concrete Production from Renewable Source and Waste

Author:

Ramasubramani R.,Gunasekaran K.ORCID

Abstract

Natural resources are being continuously extracted for the production of concrete which leads to degradation of the ecosystem. This is also a challenge for sustainability to save Nature. This study seeks to identify a suitable replacement material for river sand and stone aggregate for the sustainable utilization of renewable sources. Manufactured sand (M-sand) from industrial by-products and coconut shell (CS), an agricultural waste, are the resources selected as replacement materials for sustainability. This study uses M-sand as fine aggregate and CS coarse aggregate in place of river sand (R-sand) and crushed stone aggregate (CSA) for concrete production, respectively. To prove that M-sand and CS are sustainable alternate materials, this study focused on the microstructural characteristics on concrete constituents and CS aggregate and also conducted on concrete produced using R-sand, M-sand and CS. Also, this study focused on the microstructural characteristics and properties of conventional concrete (CC) and coconut shell concrete (CSC) produced using both R-sand and M-sand. Since this study aims to find sustainable alternative materials for R-sand and CSA by M-sand and CS, its properties are studied and compared since microstructural characterization is very significant for concrete compatibility. Microstructural studies revealed that the use of M-sand does not affect the microstructural properties of concrete compared to R-sand concrete and rather it improves the strength of concrete. A similar same trend was observed when CS was used with M-sand compared to CS used with R-sand. Hence, this study strongly suggests that the use of M-sand in its place of R-sand and CS in its place of CSA are sustainable alternatives for the production of concrete so that natural resources can be saved and hence sustainability could be sustained.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3