Mapping Forested Wetland Inundation in the Delmarva Peninsula, USA Using Deep Convolutional Neural Networks

Author:

Du Ling,McCarty Gregory W.,Zhang XinORCID,Lang Megan W.,Vanderhoof Melanie K.ORCID,Li Xia,Huang Chengquan,Lee Sangchul,Zou Zhenhua

Abstract

The Delmarva Peninsula in the eastern United States is partially characterized by thousands of small, forested, depressional wetlands that are highly sensitive to weather variability and climate change, but provide critical ecosystem services. Due to the relatively small size of these depressional wetlands and their occurrence under forest canopy cover, it is very challenging to map their inundation status based on existing remote sensing data and traditional classification approaches. In this study, we applied a state-of-the-art U-Net semantic segmentation network to map forested wetland inundation in the Delmarva area by integrating leaf-off WorldView-3 (WV3) multispectral data with fine spatial resolution light detection and ranging (lidar) intensity and topographic data, including a digital elevation model (DEM) and topographic wetness index (TWI). Wetland inundation labels generated from lidar intensity were used for model training and validation. The wetland inundation map results were also validated using field data, and compared to the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) geospatial dataset and a random forest output from a previous study. Our results demonstrate that our deep learning model can accurately determine inundation status with an overall accuracy of 95% (Kappa = 0.90) compared to field data and high overlap (IoU = 70%) with lidar intensity-derived inundation labels. The integration of topographic metrics in deep learning models can improve the classification accuracy for depressional wetlands. This study highlights the great potential of deep learning models to improve the accuracy of wetland inundation maps through use of high-resolution optical and lidar remote sensing datasets.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Geographically isolated wetlands of the United States

2. Do geographically isolated wetlands influence landscape functions?

3. Using C-Band Synthetic Aperture Radar Data to Monitor Forested Wetland Hydrology in Maryland's Coastal Plain, USA

4. Status and Trends of Wetlands in the Coastal Watersheds of the Eastern United States 1998 to 2004https://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Wetlands-in-the-Coastal-Watersheds-of-the-Eastern-United-States-1998-to-2004.pdf

5. Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3