Machine learning versus deep learning in land system science: a decision-making framework for effective land classification

Author:

Southworth Jane,Smith Audrey C.,Safaei Mohammad,Rahaman Mashoukur,Alruzuq Ali,Tefera Bewuket B.,Muir Carly S.,Herrero Hannah V.

Abstract

This review explores the comparative utility of machine learning (ML) and deep learning (DL) in land system science (LSS) classification tasks. Through a comprehensive assessment, the study reveals that while DL techniques have emerged with transformative potential, their application in LSS often faces challenges related to data availability, computational demands, model interpretability, and overfitting. In many instances, traditional ML models currently present more effective solutions, as illustrated in our decision-making framework. Integrative opportunities for enhancing classification accuracy include data integration from diverse sources, the development of advanced DL architectures, leveraging unsupervised learning, and infusing domain-specific knowledge. The research also emphasizes the need for regular model evaluation, the creation of diversified training datasets, and fostering interdisciplinary collaborations. Furthermore, while the promise of DL for future advancements in LSS is undeniable, present considerations often tip the balance in favor of ML models for many classification schemes. This review serves as a guide for researchers, emphasizing the importance of choosing the right computational tools in the evolving landscape of LSS, to achieve reliable and nuanced land-use change data.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3