Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information
Author:
Affiliation:
1. Vocational School, Department of Land Registry and Cadastre Yaln izbağ Campus, Erzincan University, Erzincan, Turkey
2. Department of Geomatics Engieering, Karadeniz Technical University, Trabzon, Turkey
Publisher
Informa UK Limited
Subject
Water Science and Technology,Geography, Planning and Development
Link
https://www.tandfonline.com/doi/pdf/10.1080/10106049.2021.1945149
Reference58 articles.
1. Improving classification accuracy of spectrally similar land covers in the rangeland and plateau areas with a combination of WorldView-2 and UAV images
2. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey
3. Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations
4. Ali MU, Ahmed S, Ferzund J, Mehmood A, Rehman A. 2017. Using PCA and factor analysis for dimensionality reduction of bio-informatics data. arXiv preprint arXiv:1707.07189.
5. Combining spectral and texture features in hyperspectral image analysis for plant monitoring
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel space–spectrum array tile probability random-forest model enhances LULC mapping accuracy on Google Earth Engine: An experiment in Ordos, China;Ecological Informatics;2024-07
2. HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution;Multimedia Systems;2024-06-20
3. Evaluating Machine-Learning Algorithms for Mapping LULC of the uMngeni Catchment Area, KwaZulu-Natal;Remote Sensing;2024-06-19
4. Machine learning versus deep learning in land system science: a decision-making framework for effective land classification;Frontiers in Remote Sensing;2024-05-23
5. Construction of environmental vibration prediction model for subway transportation based on machine learning algorithm and database technology;Scientific Reports;2024-03-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3