Evaluating Machine-Learning Algorithms for Mapping LULC of the uMngeni Catchment Area, KwaZulu-Natal

Author:

Bhungeni Orlando1ORCID,Ramjatan Ashadevi1,Gebreslasie Michael1ORCID

Affiliation:

1. School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

Abstract

Analysis of land use/land cover (LULC) in catchment areas is the first action toward safeguarding freshwater resources. LULC information in the watershed has gained popularity in the natural science field as it helps water resource managers and environmental health specialists develop natural resource conservation strategies based on available quantitative information. Thus, remote sensing is the cornerstone in addressing environmental-related issues at the catchment level. In this study, the performance of four machine learning algorithms (MLAs), namely Random Forests (RFs), Support Vector Machines (SVMs), Artificial Neural Networks (ANNs), and Naïve Bayes (NB), were investigated to classify the catchment into nine relevant classes of the undulating watershed landscape using Landsat 8 Operational Land Imager (L8-OLI) imagery. The assessment of the MLAs was based on a visual inspection of the analyst and commonly used assessment metrics, such as user’s accuracy (UA), producers’ accuracy (PA), overall accuracy (OA), and the kappa coefficient. The MLAs produced good results, where RF (OA = 97.02%, Kappa = 0.96), SVM (OA = 89.74%, Kappa = 0.88), ANN (OA = 87%, Kappa = 0.86), and NB (OA = 68.64%, Kappa = 0.58). The results show the outstanding performance of the RF model over SVM and ANN with a significant margin. While NB yielded satisfactory results, its sensitivity to limited training samples could primarily influence these results. In contrast, the robust performance of RF could be due to an ability to classify high-dimensional data with limited training data.

Funder

South African National Space Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3