Deep Learning with Adaptive Attention for Seismic Velocity Inversion

Author:

Li Fangda,Guo ZhenweiORCID,Pan Xinpeng,Liu Jianxin,Wang Yanyi,Gao Dawei

Abstract

The subsurface velocity model is crucial for high-resolution seismic imaging. Although full-waveform inversion (FWI) is a high-accuracy velocity inversion method, it inevitably suffers from challenging problems, including human interference, strong nonuniqueness, and high computing costs. As an efficient and accurate nonlinear algorithm, deep learning (DL) has been used to estimate velocity models. However, conventional DL is insufficient to characterize detailed structures and retrieve complex velocity models. To address the aforementioned problems, we propose a hybrid network (AG-ResUnet) involving fully convolutional layers, attention mechanism, and residual unit to estimate velocity models from common source point (CSP) gathers. Specifically, the attention mechanism extracts the boundary information, which serves as a structural constraint in network training. We introduce the structural similarity index (SSIM) to the loss function, which minimizes the misfit between predicted velocity and ground truth. Compared with FWI and other networks, AG-ResUnet is more effective and efficient. Experiments on transfer learning and noisy data inversion demonstrate that AG-ResUnet makes a generalized and robust velocity prediction with rich structural details. The synthetic examples demonstrate that our method can improve seismic velocity inversion, contributing to guiding the imaging of geological structures.

Funder

National Natural Science Foundation of China

Regional Innovation Cooperation Programs of Sichuan province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3