Microseismic Velocity Inversion Based on Deep Learning and Data Augmentation

Author:

Li Lei12ORCID,Zeng Xiaobao12,Pan Xinpeng12,Peng Ling12,Tan Yuyang3,Liu Jianxin12ORCID

Affiliation:

1. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, China

2. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

3. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques MOE, College of Marine Geosciences, Ocean University of China, Qingdao 266100, China

Abstract

Microseismic monitoring plays an essential role for reservoir characterization and earthquake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly affects the precision of event localization and subsequent processing. It is challenging for traditional methods to realize efficient and accurate microseismic velocity inversion due to the low signal-to-noise ratio of field data. Deep learning can efficiently invert the velocity model by constructing a mapping relationship from the waveform data domain to the velocity model domain. The predicted and reference values are fitted with mean square error as the loss function. To reduce the feature mismatch between the synthetic and real microseismic data, data augmentation is also performed using correlation and convolution operations. Moreover, a hybrid training strategy is proposed by combining synthetic and augmented data. By testing real microseismic data, the results show that the Unet is capable of high-resolution and robust velocity prediction. The data augmentation method complements more high-frequency components, while the hybrid training strategy fully combines the low-frequency and high-frequency components in the data to improve the inversion accuracy.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Excellent Young Scholars of Hunan Province, China

Central South University Innovation-Driven Research Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3