Manganese-Titanium Mixed Ion Sieves for the Selective Adsorption of Lithium Ions from an Artificial Salt Lake Brine

Author:

Ding Yaxuan1,Nhung Nguyen Thi Hong1ORCID,An Jiahao1ORCID,Chen Hao1,Liao Lianying1,He Chunlin1,Wang Xinpeng1ORCID,Fujita Toyohisa1ORCID

Affiliation:

1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

Abstract

Lithium recovery is imperative to accommodate the increase in lithium demand. Salt lake brine contains a large amount of lithium and is one of the most important sources of lithium metal. In this study, Li2CO3, MnO2, and TiO2 particles were mixed, and the precursor of a manganese–titanium mixed ion sieve (M-T-LIS) was prepared by a high-temperature solid-phase method. M-T-LISs were obtained by DL-malic acid pickling. The adsorption experiment results noted single-layer chemical adsorption and maximum lithium adsorption of 32.32 mg/g. From the Brunauer–Emmett–Teller and scanning electron microscopy results, the M-T-LIS provided adsorption sites after DL-malic acid pickling. In addition, X-ray photoelectron spectroscopy and Fourier transform infrared results showed the ion exchange mechanism of the M-T-LIS adsorption. From the results of the Li+ desorption experiment and recoverability experiment, DL-malic acid was used to desorb Li+ from the M-T-LIS with a desorption rate of more than 90%. During the fifth cycle, the Li+ adsorption capacity of the M-T-LIS was more than 20 mg/g (25.90 mg/g), and the recovery efficiency was higher than 80% (81.42%). According to the selectivity experiment, the M-T-LIS had good selectivity for Li+ (adsorption capacity of 25.85 mg/g in the artificial salt lake brine), which indicates its good application potential.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3