Role of Artificial Neural Networks Techniques in Development of Market Intelligence: A Study of Sentiment Analysis of eWOM of a Women’s Clothing Company

Author:

Nawaz Zubair,Zhao Chenhui,Nawaz Fouzia,Safeer Asif AliORCID,Irshad Waseem

Abstract

Web 2.0 technology enables customers to share electronic word of mouth (eWOM) about their experiences. eWOM offers great market insights to the organization, and important for organization’s success. eWOM monitoring and management is one of the major contemporary challenges for the organization, because of high volume and frequency of the content. It is nearly impossible for an organization to manually monitor content generated by each user. In this paper, we propose sentiment analysis as an alternative method for analysis of emotions and behavioral intentions in real-time data. Sentiment analysis is performed on women’s e-clothing reviews collected from the Kaggle data repository. The dataset consists of 23,486 reviews, comprising ten feature variables. This study applied artificial neural network techniques to determine polarity of the data in terms of positive or negative. Sentiment analysis was performed by using two artificial neural networks, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), to classify the review as recommended (positive) or not recommended (negative). The proposed models have been evaluated on these performance measuring parameters: accuracy, recall, specificity, F1-score and roc-curve. The LSTM method outperformed CNN and achieved classification accuracy of 91.69%, specificity 92.81%, sensitivity 76.95%, and 56.67% F1-score. Based on results of this study, LSTM technique is highly recommended for the sentiment analysis of unstructured text-based user-generated content.

Funder

Humanities and Social Sciences Foundation, Ministry of Education of China

Publisher

MDPI AG

Subject

Computer Science Applications,General Business, Management and Accounting

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3