Abstract
As the Internet of Things (IoT) is becoming more pervasive in our daily lives, the number of devices that connect to IoT edges and data generated at the edges are rapidly increasing. On account of the bottlenecks in servers, due to the increase in data, as well as security and privacy issues, the IoT paradigm has shifted from cloud computing to edge computing. Pursuant to this trend, embedded devices require complex computation capabilities. However, due to various constraints, edge devices cannot equip enough hardware to process data, so the flexibility of operation is reduced, because of the limitations of fixed hardware functions, relative to cloud computing. Recently, as application fields and collected data types diversify, and, in particular, applications requiring complex computation such as artificial intelligence (AI) and signal processing are applied to edges, flexible processing and computation capabilities based on hardware acceleration are required. In this paper, to meet these needs, we propose a new IoT platform, called a metamorphic IoT (mIoT) platform, which can various hardware acceleration with limited hardware platform resources, through on-demand transmission and reconfiguration of required hardware at edges instead of via transference of sensing data to a server. The proposed platform reconfigures the edge’s hardware with minimal overhead, based on a probabilistic value, known as callability. The mIoT consists of reconfigurable edge devices based on RISC-V architecture and a server that manages the reconfiguration of edge devices based on callability. Through various experimental results, we confirmed that the callability-based mIoT platform can provide the hardware required by the edge device in real time. In addition, by performing various functions with small hardware, power consumption, which is a major constraint of IoT, can be reduced.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献