On-Cloud Linking Approach Using a Linkable Glue Layer for Metamorphic Edge Devices

Author:

Lee Dongkyu1ORCID,Park Daejin1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

As sensors operating at the edge continue to evolve, the amount of data that edge devices need to process is increasing. Cloud computing methods have been proposed to process complex data on edge devices that are powered by limited resources. However, the existing cloud computing approach, which provides services from servers determined at the compile stage on the edge, is not suitable for the metamorphic edge device proposed in this paper. Therefore, we have realized the operation of metamorphic edge devices by changing the service that accelerates the application in real time according to the surrounding environmental conditions on the edge device. The on-cloud linking approach separates the code for communication from the edge and server into a linkable glue layer. The separated communication code in the linkable glue layer is reconfigured in real time according to the environment of the edge device. To verify the computational acceleration of cloud computing and the real-time service change of the metamorphic edge device, we operated services that perform matrix multiplication operations with one process, two processes, and four processes in parallel on the edge–cloud system based on the on-cloud linking approach. Through the experiments, it was confirmed that the on-cloud linking approach changes the service provided in real time according to changes in external environmental data without changing the code built into the edge. When a square matrix operation with 1000 rows was loaded onto the proposed platform, the size of the code embedded into the edge device decreased by 8.88% and the operation time decreased by 96.7%.

Funder

Ministry of Education

Ministry of Science and ICT

Korean government

IC Design Education Center (IDEC), Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3