Safety Evaluation of Plain Concrete Lining Considering Deterioration and Aerodynamic Effects

Author:

Lu Feng123ORCID,Wang Yi1,Fu Junfu4ORCID,Yang Yanxing5ORCID,Qiu Wenge2,Jing Yawen2,Jiang Manlin2,Li Huayun4

Affiliation:

1. School of Emergency Management, Xihua University, Chengdu 610039, China

2. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. Jinhua Xinsheng Zeolite Development Co., Ltd., Jinhua 321000, China

4. School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China

5. School of Civil Engineering, Sichuan University of Science & Engineering, Zigong 643000, China

Abstract

With an increase in the service time of high-speed railway tunnels, various defects caused by construction-quality defects in the secondary lining begin to appear. How to evaluate the safety of such tunnels and take countermeasures is very important for the safe operation of tunnels. Based on the load-structure method and a numerical simulation, this paper studied the short-term and long-term safety of the missing section of anti-crack reinforcement mesh in the plain concrete lining of a high-speed railway mountain tunnel. The short-term safety evaluation considered the influence of negative pressure caused by aerodynamic effects. The long-term safety evaluation considered the combined influence of the surrounding rock and concrete deterioration and the negative pressure and concrete fatigue damage caused by aerodynamic effects. The results showed that under the negative pressure generated by aerodynamic effects, the minimum tensile safety factor of the lining in the defective section increased by 3.8%, while the minimum compressive safety factor of the lining decreased by 7.9%. The negative pressure generated by the aerodynamic effects had little impact on the short-term safety of the lining in the defective section. During the long-term safety evaluation, the overall safety of the defective section decreased significantly, and the minimum tensile and minimum compressive safety factors of the lining decreased by 59.4% and 66.8%, respectively. The calculation results for the initial design do not meet the long-term design requirements and cannot guarantee the long-term safe operation of the tunnel. Finally, two new strengthening methods of galvanized steel mesh-short bolts and galvanized corrugated steel plate-short bolts were proposed to strengthen the defective section of the concrete lining, so as to improve the ultimate bearing capacity and toughness of the plain concrete lining structure.

Funder

Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Talent Introduction Project of Xihua University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3