Using Ground-Penetrating Radar and Deep Learning to Rapidly Detect Voids and Rebar Defects in Linings

Author:

Liu Peng1,Ding Zude1ORCID,Zhang Wanping1,Ren Zhihua2,Yang Xuxiang2

Affiliation:

1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Institute of Highway Science and Technology, Kunming 650051, China

Abstract

The geological radar method has found widespread use in evaluating the quality of tunnel lining. However, relying on manual experience to interpret geological radar data may cause identification errors and reduce efficiency when dealing with large numbers of data. This paper proposes a method for identifying internal quality defects in tunnel lining using deep learning and transfer learning techniques. An experimental physical model for detecting the quality of tunnel lining radars was developed to identify the typical radar image features of internal quality defects. Using the geological radar method, a large volume of lining quality detection radar image data was collected, in conjunction with several examples of tunnel engineering. The preprocessing of geological radar data was performed, including gain and normalization, and a set of data samples exhibiting typical lining quality defects was prepared with 6236 detection targets in 4246 images. The intelligent recognition models for tunnel lining quality defects were established using a combination of geological radar image datasets and transfer learning concepts, based on the SSD and YOLOv4 models. The accuracy of the SSD algorithm for cavity defect recognition is 86.58%, with the YOLOv4 algorithm achieving slightly lower accuracy at 86.05%. For steel bar missing recognition, the SSD algorithm has an accuracy of 97.7%, compared to 98.18% accuracy for the YOLOv4 algorithm. This indicates that deep learning-based models are practical for tunnel quality defect detection.

Funder

National Natural Science Foundation of China

Technology Project of Yunnan Provincial Department of Transportation

Yunnan Science and Technology Department Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3