Affiliation:
1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
2. Yunnan Institute of Highway Science and Technology, Kunming 650051, China
Abstract
The geological radar method has found widespread use in evaluating the quality of tunnel lining. However, relying on manual experience to interpret geological radar data may cause identification errors and reduce efficiency when dealing with large numbers of data. This paper proposes a method for identifying internal quality defects in tunnel lining using deep learning and transfer learning techniques. An experimental physical model for detecting the quality of tunnel lining radars was developed to identify the typical radar image features of internal quality defects. Using the geological radar method, a large volume of lining quality detection radar image data was collected, in conjunction with several examples of tunnel engineering. The preprocessing of geological radar data was performed, including gain and normalization, and a set of data samples exhibiting typical lining quality defects was prepared with 6236 detection targets in 4246 images. The intelligent recognition models for tunnel lining quality defects were established using a combination of geological radar image datasets and transfer learning concepts, based on the SSD and YOLOv4 models. The accuracy of the SSD algorithm for cavity defect recognition is 86.58%, with the YOLOv4 algorithm achieving slightly lower accuracy at 86.05%. For steel bar missing recognition, the SSD algorithm has an accuracy of 97.7%, compared to 98.18% accuracy for the YOLOv4 algorithm. This indicates that deep learning-based models are practical for tunnel quality defect detection.
Funder
National Natural Science Foundation of China
Technology Project of Yunnan Provincial Department of Transportation
Yunnan Science and Technology Department Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference31 articles.
1. Development Trends and Views of Highway Tunnels in China over the Past Decade;Hong;China J. Highw. Transp.,2020
2. Lu, F., Wang, Y., Fu, J., Yang, Y., Qiu, W., Jing, Y., Jiang, M., and Li, H. (2023). Safety Evaluation of Plain Concrete Lining Considering Deterioration and Aerodynamic Effects. Sustainability, 15.
3. The behaviour of ultrasonic pulses in concrete;Popovics;Cem. Concr. Res.,1990
4. An overview of infrared thermography techniques used in large wind tunnels;Marchand;Aerosp. Sci. Technol.,2002
5. Comprehensive geophysical prediction and treatment measures of karst caves in deep buried tunnel;Li;J. Appl. Geophys.,2015
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献