Abstract
The effects induced by heat on Depurple and Cheddar (Brassica oleracea L. var. botrytis) during boiling, steaming, and sous-vide were investigated to elucidate the role of the basic cellular elements in softening and extractability of sterols and tocopherols. With this aim, an elastoplastic mechanical model was conceptualized at a cell scale-size and validated under creep experiments. The total amount of the phytochemicals was used to validate multivariate regression models in forecasting. Boiling was the most effective method to enhance the softening mechanisms causing tissue decompartmentalization through cell wall loosening with respect to those causing cell separation, having no impact on the phytochemical extractability. Sous-vide showed the lowest impact on cell wall integrity, but the highest in terms of cell separation. Steaming showed an intermediate behavior. Tissue of the Depurple cauliflower was the most resistant to the heat, irrespectively to the heating technology. Local heterogeneity in the cell wall and cell membrane, expected as a plant variety-dependent functional property, was proposed as a possible explanation because sterol extractability under lower heat-transfer efficiency, i.e., steaming and sous-vide, decreased in Depurple and increased in Cheddar as well as because the extractability of sterols and tocopherols was greater in Cheddar.
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献