Molecular Properties of Flammulina velutipes Polysaccharide–Whey Protein Isolate (WPI) Complexes via Noncovalent Interactions

Author:

Shang Jiaqi,Liao Minhe,Jin Ritian,Teng Xiangyu,Li Hao,Xu Yan,Zhang Ligang,Liu Ning

Abstract

Whey protein isolate (WPI) has a variety of nutritional benefits. The stability of WPI beverages has attracted a large amount of attention. In this study, Flammulina velutipes polysaccharides (FVPs) interacted with WPI to improve the stability via noncovalent interactions. Multiple light scattering studies showed that FVPs can improve the stability of WPI solutions, with results of radical scavenging activity assays demonstrating that the solutions of the complex had antioxidant activity. The addition of FVPs significantly altered the secondary structures of WPI, including its α-helix and random coil. The results of bio-layer interferometry (BLI) analysis indicated that FVPs interacted with the WPI, and the equilibrium dissociation constant (KD) was calculated as 1.736 × 10−4 M in this study. The in vitro digestibility studies showed that the FVPs protected WPI from pepsin digestion, increasing the satiety. Therefore, FVPs effectively interact with WPI through noncovalent interactions and improve the stability of WPI, with this method expected to be used in protein-enriched and functional beverages.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3