Abstract
This study was primarily focused on the supercritical fluid extraction (SFE) of cherry seed oil and the optimization of the process using sequential extraction kinetics modeling and artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of experiment, with additional runs. Pressure, temperature and flow rate were chosen as independent variables. Five well known empirical kinetic models and three mass-transfer kinetics models based on the Sovová’s solution of SFE equations were successfully applied for kinetics modeling. The developed mass-transfer models exhibited better fit of experimental data, according to the calculated statistical tests (R2, SSE and AARD). The initial slope of the SFE curve was evaluated as an output variable in the ANN optimization. The obtained results suggested that it is advisable to lead SFE process at an increased pressure and CO2 flow rate with lower temperature and particle size values to reach a maximal initial slope.
Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献