Abstract
This study determined the potential of computer vision systems, namely the whole-side carcass camera (HCC) compared to the rib-eye camera (CCC) and dual energy X-ray absorptiometry (DXA) technology to predict primal and carcass composition of cull cows. The predictability (R2) of the HCC was similar to the CCC for total fat, but higher for lean (24.0%) and bone (61.6%). Subcutaneous fat (SQ), body cavity fat, and retail cut yield (RCY) estimations showed a difference of 6.2% between both CVS. The total lean meat yield (LMY) estimate was 22.4% better for CCC than for HCC. The combination of HCC and CCC resulted in a similar prediction of total fat, SQ, and intermuscular fat, and improved predictions of total lean and bone compared to HCC/CCC. Furthermore, a 25.3% improvement was observed for LMY and RCY estimations. DXA predictions showed improvements in R2 values of 26.0% and 25.6% compared to the HCC alone or the HCC + CCC combined, respectively. These results suggest the feasibility of using HCC for predicting primal and carcass composition. This is an important finding for slaughter systems, such as those used for mature cattle in North America that do not routinely knife rib carcasses, which prevents the use of CCC.
Funder
This study was funded by Agriculture and Agri-Food Canada (AAFC) as part of their 419 AgriInnovation Program Stream B
Subject
Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献