Proton Low Field NMR Relaxation Time Domain Sensor for Monitoring of Oxidation Stability of PUFA-Rich Oils and Emulsion Products

Author:

Resende Maysa T.ORCID,Osheter Tatiana,Linder Charles,Wiesman Zeev

Abstract

The nutritional characteristics of fatty acid (FA) containing foods are strongly dependent on the FA’s chemical/morphological arrangements. Paradoxically the nutritional, health enhancing FA polyunsaturated fatty acids (PUFAs) are highly susceptible to oxidation into harmful toxic side products during food preparation and storage. Current analytical technologies are not effective in the facile characterization of both the morphological and chemical structures of PUFA domains within materials for monitoring the parameters affecting their oxidation and antioxidant efficacy. The present paper is a review of our work on the development and application of a proton low field NMR relaxation sensor (1H LF NMR) and signal to time domain (TD) spectra reconstruction for chemical and morphological characterization of PUFA-rich oils and their oil in water emulsions, for assessing their degree and susceptibility to oxidation and the efficacy of antioxidants. The NMR signals are energy relaxation signals generated by spin–lattice interactions (T1) and spin–spin interactions (T2). These signals are reconstructed into 1D (T1 or T2) and 2D graphics (T1 vs. T2) by an optimal primal-dual interior method using a convex objectives (PDCO) solver. This is a direct measurement on non-modified samples where the individual graph peaks correlate to structural domains within the bulk oil or its emulsions. The emulsions of this review include relatively complex PUFA-rich oleosome-oil bodies based on the aqueous extraction from linseed seeds with and without encapsulation of externally added oils such as fish oil. Potential applications are shown in identifying optimal health enhancing PUFA-rich food formulations with maximal stability against oxidation and the potential for on-line quality control during preparation and storage.

Funder

Israeli authority of innovation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3