Semi-Autonomic AI LF-NMR Sensor for Industrial Prediction of Edible Oil Oxidation Status

Author:

Osheter Tatiana1,Campisi Pinto Salvatore1ORCID,Randieri Cristian2,Perrotta Andrea2,Linder Charles1,Weisman Zeev1

Affiliation:

1. Phyto-Lipid Biotech Lab (PLBL), Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 8499000, Israel

2. eCampus University, Via Isimbardi, 10, 22060 Novedrate, Italy

Abstract

The evaluation of an oil’s oxidation status during industrial production is highly important for monitoring the oil’s purity and nutritional value during production, transportation, storage, and cooking. The oil and food industry is seeking a real-time, non-destructive, rapid, robust, and low-cost sensor for nutritional oil’s material characterization. Towards this goal, a 1H LF-NMR relaxation sensor application based on the chemical and structural profiling of non-oxidized and oxidized oils was developed. This study dealt with a relatively large-scale oil oxidation database, which included crude data of a 1H LF-NMR relaxation curve, and its reconstruction into T1 and T2 spectral fingerprints, self-diffusion coefficient D, and conventional standard chemical test results. This study used a convolutional neural network (CNN) that was trained to classify T2 relaxation curves into three ordinal classes representing three different oil oxidation levels (non-oxidized, partial oxidation, and high level of oxidation). Supervised learning was used on the T2 signals paired with the ground-truth labels of oxidation values as per conventional chemical lab oxidation tests. The test data results (not used for training) show a high classification accuracy (95%). The proposed AI method integrates a large training set, an LF-NMR sensor, and a machine learning program that meets the requirements of the oil and food industry and can be further developed for other applications.

Funder

Israeli Authority of Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3