Affiliation:
1. Phyto-Lipid Biotech Lab (PLBL), Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva 8499000, Israel
2. eCampus University, Via Isimbardi, 10, 22060 Novedrate, Italy
Abstract
The evaluation of an oil’s oxidation status during industrial production is highly important for monitoring the oil’s purity and nutritional value during production, transportation, storage, and cooking. The oil and food industry is seeking a real-time, non-destructive, rapid, robust, and low-cost sensor for nutritional oil’s material characterization. Towards this goal, a 1H LF-NMR relaxation sensor application based on the chemical and structural profiling of non-oxidized and oxidized oils was developed. This study dealt with a relatively large-scale oil oxidation database, which included crude data of a 1H LF-NMR relaxation curve, and its reconstruction into T1 and T2 spectral fingerprints, self-diffusion coefficient D, and conventional standard chemical test results. This study used a convolutional neural network (CNN) that was trained to classify T2 relaxation curves into three ordinal classes representing three different oil oxidation levels (non-oxidized, partial oxidation, and high level of oxidation). Supervised learning was used on the T2 signals paired with the ground-truth labels of oxidation values as per conventional chemical lab oxidation tests. The test data results (not used for training) show a high classification accuracy (95%). The proposed AI method integrates a large training set, an LF-NMR sensor, and a machine learning program that meets the requirements of the oil and food industry and can be further developed for other applications.
Funder
Israeli Authority of Innovation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献