Impact of Rapeseed Press Cake on the Rheological Properties and Expansion Dynamics of Extruded Maize Starch

Author:

Martin AnnaORCID,Osen Raffael,Karbstein Heike PetraORCID,Emin M. Azad

Abstract

Rapeseed press cake (RPC), an oil pressing side product rich in protein and fiber, can be combined with starch and valorized into directly expanded products using extrusion technology. The mechanism of starch expansion has been studied in detail, but the impact of RPC on expansion behavior is poorly understood. However, it can be linked to rheological and physicochemical properties and is a key product quality parameter. Blends with different amounts of RPC (0, 10, 40 g/100 g) were extruded at different barrel temperatures (100, 120, 140 °C) and moisture contents (24 or 29 g/100 g). The initial, intermediate and final sectional, longitudinal and volumetric expansion indices (SEI, LEI, VEI) were monitored directly, 10 s and 24 h after die exit to measure extrudate growth and shrinkage. The viscous and elastic properties of the extruded blends were investigated in a closed cavity rheometer. Starch and blends with 10 g/100 g RPC achieved a high initial SEI followed by significant short-term shrinkage. Blends containing 40 g/100 g RPC did not show any initial expansion. With increasing RPC content, the intermediate SEI decreased, but all samples reached a similar final SEI due to time-dependent swelling of the RPC blends. With increasing RPC content, the elasticity of the starch-based extruded samples significantly increased. Our study shows that comprehensive control and understanding of expansion mechanisms can be achieved only by investigating all stages of extrudate growth and shrinkage. We also found that the closed cavity rheometer is a powerful tool to correlate the rheological properties and expansion mechanisms of biopolymers.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3