Comparison of the Rheological Properties of Plant Proteins from Various Sources for Extrusion Applications

Author:

Wittek PatrickORCID,Walther Goeran,Karbstein Heike P.ORCID,Emin M. Azad

Abstract

Plant proteins in foods are becoming increasingly popular with consumers. However, their application in extruded products remains a major challenge, as the various protein-rich raw materials (e.g., from different plant origins) exhibit very different material properties. In particular, the rheological properties of these raw materials have a distinct influence on the extrusion process and must be known in order to be able to control the process and adjust the product properties. In this study, process-relevant rheological properties of 11 plant-based protein-rich raw materials (differing in plant origin, protein content, and manufacturer) are determined and compared. The results demonstrate distinct differences in the rheological properties, even when plant origin and protein content are identical. Time sweeps reveal not only large differences in development of viscosity over time, but also in magnitude of viscosity (up to 15-fold difference). All materials exhibit gel behaviour and strain thinning behaviour in the strain sweeps, whereas their behaviour in the non-linear viscoelastic range differs greatly. Typical relaxation behaviour of viscoelastic materials could be observed in the stress relaxation tests for all materials. Comparison of the maximum achieved shear stress, which correlates with the elastic properties, reveals an up to 53-fold difference. The results of this study could serve as a starting point for adapting raw material selection and composition to process and product design requirements and help to meet the challenge of applying plant-based proteins in food extrusion.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3