Effects of Gaseous Ozone on Microbiological Quality of Andean Blackberries (Rubus glaucus Benth)

Author:

Horvitz SandraORCID,Arancibia MirariORCID,Arroqui CristinaORCID,Chonata Erika,Vírseda Paloma

Abstract

Andean blackberries are highly perishable due to their susceptibility to water loss, softening, mechanical injuries, and postharvest diseases. In this study, the antimicrobial efficacy of gaseous ozone against spoilage (mesophiles, psychrotrophs, and yeasts and molds) and pathogenic (E. coli, S. enterica, and B. cinerea) microorganisms was evaluated during 10 days of storage at 6 ± 1 °C. Respiration rate and mass loss were also determined. Ozone was applied prior to storage at 0.4, 0.5, 0.6, and 0.7 ppm, for 3 min. The best results were observed with the higher ozone dose, with initial maximum reductions of ~0.5, 1.09, and 0.46 log units for E. coli, S. enterica, and B. cinerea, respectively. For the native microflora, maximum reductions of 1.85, 1.89, and 2.24 log units were achieved on day 1 for the mesophiles, psychrotrophs, and yeasts and molds, respectively, and this effect was maintained throughout storage. In addition, the lower respiration rate and mass loss of the blackberries ozonated at 0.7 ppm indicate that this treatment did not induce physiological damage to the fruit. Gaseous O3 could be effective in maintaining the postharvest quality of blackberries throughout refrigerated storage but higher doses could be advisable to enhance its antimicrobial activity.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3