Impact of Charge-Trapping Effects on Reliability Instability in AlxGa1−xN/GaN High-Electron-Mobility Transistors with Various Al Compositions

Author:

Amir Walid1,Chakraborty Surajit1ORCID,Kwon Hyuk-Min2,Kim Tae-Woo1ORCID

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

2. Department of Semiconductor Processing Equipment, Semiconductor Convergence Campus, Korea Polytechnics, Anseong-si 17550, Republic of Korea

Abstract

In this study, we present a detailed analysis of trapping characteristics at the AlxGa1−xN/GaN interface of AlxGa1−xN/GaN high-electron-mobility transistors (HEMTs) with reliability assessments, demonstrating how the composition of the Al in the AlxGa1−xN barrier impacts the performance of the device. Reliability instability assessment in two different AlxGa1−xN/GaN HEMTs [x = 0.25, 0.45] using a single-pulse ID–VD characterization technique revealed higher drain-current degradation (∆ID) with pulse time for Al0.45Ga0.55N/GaN devices which correlates to the fast-transient charge-trapping in the defect sites near the interface of AlxGa1−xN/GaN. Constant voltage stress (CVS) measurement was used to analyze the charge-trapping phenomena of the channel carriers for long-term reliability testing. Al0.45Ga0.55N/GaN devices exhibited higher-threshold voltage shifting (∆VT) caused by stress electric fields, verifying the interfacial deterioration phenomenon. Defect sites near the interface of the AlGaN barrier responded to the stress electric fields and captured channel electrons—resulting in these charging effects that could be partially reversed using recovery voltages. The quantitative extraction of volume trap density (Nt) using 1/f low-frequency noise characterizations unveiled a 40% reduced Nt for the Al0.25Ga0.75N/GaN device, further verifying the higher trapping phenomena in the Al0.45Ga0.55N barrier caused by the rougher Al0.45Ga0.55N/GaN interface.

Funder

University of Ulsan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3