An Improved Innovation Adaptive Kalman Filter for Integrated INS/GPS Navigation

Author:

Sun Bo,Zhang ZhenweiORCID,Qiao DianjuORCID,Mu Xiaotong,Hu Xiaochen

Abstract

The performance of transportation systems has been greatly improved by the rapid development of connected and autonomous vehicles, of which high precision and reliable positioning is a key technology. An improved innovation adaptive Kalman filter (IAKF) is proposed to solve the vulnerability of Kalman filtering (KF) in challenging urban environments during integrated navigation. First, the algorithm uses the innovation to construct a chi-squared test to determine the abnormal measurement noise; on this basis, the update method of the measurement noise variance matrix is improved, and the measurement noise variance matrix is adaptively updated by the difference between the current innovation and the mean value of the innovation when the measurement data is abnormal so as to reflect the impact degree of the current abnormal measurement data, thus suppressing the filtering divergence and improving the positioning accuracy. The experimental results show that the proposed algorithm can well suppress the filtering divergence when the measurement data are disturbed. The results demonstrate that the algorithm in this paper has improved adaptiveness and stability and provides a novel idea for the development of an intelligent traffic positioning system.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

1. Research on the Development Strategy of the Internet of Vehicles

2. Short-Term Traffic Flow Prediction for Urban Road Sections Based on Time Series Analysis and LSTM_BILSTM Method

3. Performance Measurement Evaluation Framework and Co-Benefit\/Tradeoff Analysis for Connected and Automated Vehicles (CAV) Applications: A Survey

4. Research on Development of Vehicle Collaborative Localization in Internet of Vehicles Environment;Min;Unmanned Syst. Technol.,2021

5. Development status and trend of global navigation satellite system;Liu;J. Navig. Position,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3