An GNSS/INS Integrated Navigation Algorithm Based on PSO-LSTM in Satellite Rejection

Author:

Cao Yu1,Bai Hongyang12ORCID,Jin Kerui1,Zou Guanyu1

Affiliation:

1. School of Energy and Power Engineering, Nanjing University of Science and Technology (NJUST), Nanjing 210094, China

2. Key Laboratory of Maritime Intelligent Cyberspace Technology, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094, China

Abstract

When the satellite signal is lost or interfered with, the traditional GNSS (Global Navigation Satellite System)/INS (Inertial Navigation System) integrated navigation will degenerate into INS, which results in the decrease in navigation accuracy. To solve these problems, this paper mainly established the PSO (particle swarm optimization) -LSTM (Long Short-Term Memory) neural network model to predict the increment of GNSS position under the condition of satellite rejection and accumulation to obtain the pseudo-GNSS signal. The signal is used to compensate for the observed value in the integrated system. The model takes the advantages of LSTM, which is good at processing time series, and uses PSO to obtain the optimal value of important hyperparameters efficiently. Meanwhile, the improved threshold function is used to denoise the IMU (inertial measurement unit) data, which improves the SNR (signal-to-noise ratio) of IMU outputs effectively. Finally, the performance of the algorithm is proved by actual road test. Compared with INS, the method can reduce the maximum errors of latitude and longitude by at least 98.78% and 99.10% while the satellite is lost for 60 s, effectively improving the accuracy of the GNSS/INS system in satellite rejection.

Funder

National Natural Science Foundation of China

Defense Science and Technology 173 Program Field Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3