New Orbit Determination Method for GEO Satellites Based on BeiDou Short-Message Communication Ranging

Author:

Li Xiaojie,Guo Rui,Chen JianbingORCID,Liu Shuai,Chang Zhiqiao,Xin Jie,Guo Jinglei,Tian Yijun

Abstract

The radio determination service system (RDSS), a navigation and positioning system independently developed by China, features services such as short-message communication, position reporting, and international search and rescue. The L-band pseudo-range and phase data are the primary data sources in precise orbit determination (POD) for geostationary Earth orbit (GEO) satellite in the BeiDou system, especially in the orbit manoeuvre period. These data are the only data sources in the POD for GEOs. However, when the pseudo-range and phase data is abnormal due to unforeseen reasons, such as satellite hardware failure or monitoring receiver abnormalities, the data abnormality leads to orbit determination abnormalities or even failures for GEOs, then the service performance and availability of the RDSS system are greatly degraded. Therefore, a new POD method for GEOs based on BeiDou short-message communication ranging data has gained research attention to improve the service reliability of the BeiDou navigation satellite system (BDS)-3, realising the deep integration of communication and navigation services of the BDS. This problem has not been addressed so far. Therefore, in this study, a new POD method for GEO satellites is investigated using high-precision satellite laser ranging (SLR) data and RDSS data. The SLR data are used as the benchmark to calibrate the time delay value of RDSS equipment, and RDSS data are only used in the orbit determination process by fixing the corrected RDSS time delay value, and the satellite orbit parameters and dynamic parameters are solved. Experimental analysis is conducted using the measured SLR and RDSS data of the BDS, and the orbit accuracy in this paper is evaluated by the precise ephemeris of the Multi-GNSS pilot project (MGEX) and SLR data. The results show that the orbit accuracy in the orbital arc and the 2-h orbital prediction arc for GEOs are 6.01 m and 6.99 m, respectively, compared with the ephemeris of MGEX, and the short-arc orbit accuracy after 4 h of manoeuvring is 11.11 m. The orbit accuracy in the radial component by SLR data is 0.54 m. The required orbit accuracy for GEO satellites in the RDSS service of the BDS-3 is 15 m. The orbit accuracy achieved in this paper is superior to that of this technical index. This method expands the application field of the RDSS data and greatly enriches the POD method for GEOs. It can be adopted as a backup technology for the POD method for GEOs based on RNSS data, significantly improving the service reliability of the BeiDou RDSS service.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. Basic performance and future developments of BeiDou global navigation satellite system

2. Comparison and analysis of two orbit determination methods for BDS-3 satellites;Yang;Acta Geod. Cartogr. Sin.,2019

3. Introduction to BeiDou‐3 navigation satellite system

4. Innovative development and forecast of BeiDou system;Tan;Acta Geod. Et Cartogr. Sin.,2017

5. The Engineering of Satellite Navigation and Positioning;Tan,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3