A Machine Learning Method for Engineering Risk Identification of Goaf

Author:

Yuan HaipingORCID,Cao Zhanhua,Xiong Lijun,Li HengzheORCID,Wang YixianORCID

Abstract

The risk evaluation indexes of goaf are multi-source and have complex mutual internal correlations, and there are great differences in the risk identification of goaf from different mines among the various influencing factors. This paper mainly focuses on principal component analysis (PCA) and the differential evolution algorithm (DE), while a multi-classification support vector machine (SVM) is adopted to classify the risks of goaf. Then, the K-fold cross-validation method is used to prevent the overfitting of selection in the model. After the analysis, nine factors affecting the risk identification of goaf in a certain area of East China were determined as the primary influencing factors, and 120 measured goafs were taken as examples for classifying the risks. More specifically, the classification results show that: (1) SVM has the useful ability of generalization, especially when solving the problems of overfitting, and it is easy to fall into the local minima under the conditions of small samples; (2) PCA is employed to realize the intelligent dimensionality reduction and denoising of multi-source impact indicators for goaf risk identification, which immensely improves the prediction accuracy and classification efficiency of the model; (3) after using the DE, the optimal solutions of the problems to be optimized are automatically obtained through the global optimization search mechanism, namely, the kernel function parameter, ‘γ’, and the penalty factor, ‘C’, of the SVM, which further verifies that the characteristics of clear logic, strong convergence, and good robustness can be found in the DE. As demonstrated, this method has the advantages of guiding significance and application value for goaf risk identification.

Funder

National Natural Science Foundation of China

the University Synergy Innovation Program of Anhui Province

the Opening Project of the State Key Laboratory of Explosion Science and Technology, and the Beijing Institute of Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3