Stability Evaluation of the Goaf Based on Combination Weighting and Cloud Model

Author:

Guo Linning12ORCID,Hou Kepeng12ORCID,Sun Huafen12ORCID,Yang Yong12ORCID

Affiliation:

1. Department of Resource Development Engineering, Kunming University of Science and Technology, Kunming 650000, China

2. Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming University of Science and Technology, Kunming 650000, China

Abstract

Goaf has become one of the most significant sources of hazard affecting the safety of metal and nonmetal mines. Evaluation of goaf stability is of paramount importance for mine safety production. First, 13 indices such as rock mass structure, geological structure, and goaf volume are selected based on engineering experience and literature review to assess the stability of goaf. These indices are classified according to the characteristics of each factor, and a stability evaluation system for underground mine goaf is constructed. Second, the analytic hierarchy process method based on group decision theory is utilized to calculate the subjective weight of each index. Additionally, the CRITIC method is used to calculate the objective weight of each index. Finally, game theory is used to combine the subjective and objective weights, thereby improving the accuracy of the index weight. The stability grade of the goaf is calculated using the normal cloud model. The FLAC3D numerical simulation is used to analyze the stability of the goaf and verify the accuracy of the model. The abovementioned model is utilized for assessing the stability of the goaf in the Duimenshan mine section. The results indicate that 90% of the goaf area is in a stable or relatively stable condition, while the remaining 10% is unstable. The evaluation outcomes were compared with FLAC3D numerical simulations, highlighting a scientific and reliable method with an accuracy rate of 90%.

Publisher

Hindawi Limited

Reference34 articles.

1. 2017 National statistical analysis report on production and safety accidents in non-coal mines released;Ministry of Emergency Management of the People’s Republic of China;Occupational Health and Emergency Rescue,2018

2. Numerical simulation on the deformation and failure of the goaf surrounding rock in Heiwang mine

3. Comprehensive identification of stability of air-mining zones with ITOPSIS coupled with PSF;N. Jia;Journal of Northeastern University (Natural Science Edition),2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3