Emergency Vehicle Driving Assistance System Using Recurrent Neural Network with Navigational Data Processing Method

Author:

Anjum Mohd1,Shahab Sana2ORCID

Affiliation:

1. Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India

2. Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Emergency vehicle transportation is important for responding to and transporting individuals during emergencies. This type of transportation faces several issues, such as road safety, navigation and communication, time-critical operations, resource utilisation, traffic congestion, data processing and analysis, and individual safety. Vehicle navigation and coordination is a critical aspect of emergency response that involves guiding emergency vehicles, such as ambulances, to the location of an emergency or medical centre as quickly and safely as possible. Therefore, it requires additional effort to reduce driving risks. The roadside units support emergency vehicles and infrastructure to decrease collisions and enhance optimal navigation routes. However, during the emergency vehicle’s data communication and navigation process, communication is interrupted due to vehicle outages. Therefore, this study proposes the Navigation Data Processing for Assisted Driving (NDP-AD) method to address the problem. The proposed approach assimilates infrastructure and neighbouring location information during driving. The integrated information is processed for distance and traffic during the previous displacement interval. The NDP-AD method employs a recurrent neural network learning approach to analyse opposing vehicle distance and traffic to provide accurate, independent guidance. This effective learning-based guidance process minimises false navigations and deviation in displacement. System efficiency is evaluated based on processing latency, displacement error, data utilisation, false rate, and accuracy metrics.

Funder

the Princess Nourah bint Abdulrahman University Researchers Supporting

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3