Variable Speed Limit Intelligent Decision-Making Control Strategy Based on Deep Reinforcement Learning under Emergencies

Author:

Yang Jingwen1ORCID,Wang Ping2,Ju Yongfeng1

Affiliation:

1. School of Electronic and Control Engineering, Chang’an University, Xi’an 710054, China

2. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 510006, China

Abstract

Uncertain emergency events are inevitable and occur unpredictably on the highway. Emergencies with lane capacity drops cause local congestion and can even cause a second accident if the response is not timely. To address this problem, a self-triggered variable speed limit (VSL) intelligent decision-making control strategy based on the improved deep deterministic policy gradient (DDPG) algorithm is proposed, which can eliminate or alleviate congestion in a timely manner. The action noise parameter is introduced to improve exploration efficiency and stability in the early stage of the algorithm training and then maximizes differential traffic flow as the control objective, taking the real-time traffic state as the input. The reward function is constructed to explore the values of the speed limit. The results show that in terms of safety, under different traffic flow levels, the proposed strategy has improved by over 28.30% compared to other methods. In terms of efficiency, except for being inferior to the no-control condition during low-traffic-flow conditions, our strategy has improved over 7.21% compared to the others. The proposed strategy greatly benefits traffic sustainability in Intelligent Transport Systems (ITSs).

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3