A Software Framework for Predicting the Maize Yield Using Modified Multi-Layer Perceptron

Author:

Ahmed Shakeel1ORCID

Affiliation:

1. Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia

Abstract

Predicting crop yields is one of agriculture’s most challenging issues. It is crucial in making national, provincial, and regional choices and estimates the government to meet the food demands of its citizens. Crop production is anticipated based on various factors such as soil conditions and meteorological, environmental, and crop variables. This study intends to develop an effective model that can accurately anticipate agricultural production in advance, assisting farmers in better planning. In the current study, the Crop Yield Prediction Dataset is normalized initially, and then feature engineering is performed to determine the significance of the feature in assessing the crop yield. Crop yield forecasting is performed using the Multi-Layer Perceptron model and the Spider Monkey Optimization method. The Multi-Layer Perceptron technique is efficient in dealing with the non-linear relations among the features in the data, and the Spider Monkey Optimization technique would assist in optimizing the corresponding feature weights. The current study uses data from the Food and Agriculture Organization and the World Data Bank to forecast maize yield in the Saudi Arabia region based on factors such as average temperature, average rainfall, and Hg/Ha production in past years. The suggested MLP-SMO model’s prediction effectiveness is being evaluated using several evaluation metrics such as Root-Mean-Square Error, R-Squared, Mean Absolute Error, and Mean Bias Error, where the model has outperformed in the prediction process with a Root-Mean-Square Error value of 0.11, which is lowest among all the techniques that are considered in the statical analysis in the current study.

Funder

Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3