Abstract
AbstractPotatoes are an important crop in the world; they are the main source of food for a large number of people globally and also provide an income for many people. The true forecasting of potato yields is a determining factor for the rational use and maximization of agricultural practices, responsible management of the resources, and wider regions’ food security. The latest discoveries in machine learning and deep learning provide new directions to yield prediction models more accurately and sparingly. From the study, we evaluated different types of predictive models, including K-nearest neighbors (KNN), gradient boosting, XGBoost, and multilayer perceptron that use machine learning, as well as graph neural networks (GNNs), gated recurrent units (GRUs), and long short-term memory networks (LSTM), which are popular in deep learning models. These models are evaluated on the basis of some performance measures like mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) to know how much they accurately predict the potato yields. The terminal results show that although gradient boosting and XGBoost algorithms are good at potato yield prediction, GNNs and LSTMs not only have the advantage of high accuracy but also capture the complex spatial and temporal patterns in the data. Gradient boosting resulted in an MSE of 0.03438 and an R2 of 0.49168, while XGBoost had an MSE of 0.03583 and an R2 of 0.35106. Out of all deep learning models, GNNs displayed an MSE of 0.02363 and an R2 of 0.51719, excelling in the overall performance. LSTMs and GRUs were reported to be very promising as well, with LSTMs comprehending an MSE of 0.03177 and GRUs grabbing an MSE of 0.03150. These findings underscore the potential of advanced predictive models to support sustainable agricultural practices and informed decision-making in the context of potato farming.
Publisher
Springer Science and Business Media LLC