Predicting Potato Crop Yield with Machine Learning and Deep Learning for Sustainable Agriculture

Author:

El-Kenawy El-Sayed M.,Alhussan Amel Ali,Khodadadi NimaORCID,Mirjalili Seyedali,Eid Marwa M.

Abstract

AbstractPotatoes are an important crop in the world; they are the main source of food for a large number of people globally and also provide an income for many people. The true forecasting of potato yields is a determining factor for the rational use and maximization of agricultural practices, responsible management of the resources, and wider regions’ food security. The latest discoveries in machine learning and deep learning provide new directions to yield prediction models more accurately and sparingly. From the study, we evaluated different types of predictive models, including K-nearest neighbors (KNN), gradient boosting, XGBoost, and multilayer perceptron that use machine learning, as well as graph neural networks (GNNs), gated recurrent units (GRUs), and long short-term memory networks (LSTM), which are popular in deep learning models. These models are evaluated on the basis of some performance measures like mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) to know how much they accurately predict the potato yields. The terminal results show that although gradient boosting and XGBoost algorithms are good at potato yield prediction, GNNs and LSTMs not only have the advantage of high accuracy but also capture the complex spatial and temporal patterns in the data. Gradient boosting resulted in an MSE of 0.03438 and an R2 of 0.49168, while XGBoost had an MSE of 0.03583 and an R2 of 0.35106. Out of all deep learning models, GNNs displayed an MSE of 0.02363 and an R2 of 0.51719, excelling in the overall performance. LSTMs and GRUs were reported to be very promising as well, with LSTMs comprehending an MSE of 0.03177 and GRUs grabbing an MSE of 0.03150. These findings underscore the potential of advanced predictive models to support sustainable agricultural practices and informed decision-making in the context of potato farming.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3