BER-XGBoost: Pothole Detection based on Feature Extraction and Optimized XGBoost using BER Metaheuristic Algorithm

Author:

Abdelmalak Mark Emad S., , , , , , ,Gaber Khaled Sh.,Ahmed Mariam Abdallah,OubeBlika Najaad,Zaki Ahmed Mohamed,Eid Marwa M.

Abstract

Within the realm of intelligent transportation systems, the imperative challenge of pothole detection assumes a pivotal role in ensuring road safety and upholding infrastructure integrity. This research undertaking meticulously navigates the intricacies of automated pothole detection, employing a nuanced and multifaceted approach. The dataset, comprising over 300 meticulously labeled images of roads with and without potholes, constitutes the cornerstone of our investigation. By leveraging the robust GoogLeNet for feature extraction and orchestrating the optimization of XGBoost through the Al-Biruni Earth Radius Metaheuristic Algorithm, our proposed methodology exhibits a commendable efficacy in discerning road anomalies. The outcomes elucidate the efficacy of the implemented strategies, with BER-XGBoost emerging as a preeminent performer, achieving an accuracy rate of 96.01%. This model not only attains superior accuracy but also manifests a comprehensive array of metrics, including sensitivity, specificity, positive predictive value, negative predictive value, and F-score. Rigorous statistical analyses, encompassing ANOVA and the Wilcoxon Signed Rank Test, furnish empirical substantiation of the consequential nature of our methodologies. In conclusion, this study not only contributes practical insights to the pertinent field but also stimulates pivotal inquiries regarding the ramifications of optimization strategies and the intricate role played by feature extraction in the domain of automated pothole detection. This research propels the ceaseless evolution of intelligent systems, effectively bridging the chasm between technological progressions and real-world applications, thereby augmenting road safety and fortifying infrastructure management.

Publisher

ASPG Publishing LLC

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3