Ridge Regression and the Elastic Net: How Do They Do as Finders of True Regressors and Their Coefficients?

Author:

Gana RajaramORCID

Abstract

For the linear model Y=Xb+error, where the number of regressors (p) exceeds the number of observations (n), the Elastic Net (EN) was proposed, in 2005, to estimate b. The EN uses both the Lasso, proposed in 1996, and ordinary Ridge Regression (RR), proposed in 1970, to estimate b. However, when p>n, using only RR to estimate b has not been considered in the literature thus far. Because RR is based on the least-squares framework, only using RR to estimate b is computationally much simpler than using the EN. We propose a generalized ridge regression (GRR) algorithm, a superior alternative to the EN, for estimating b as follows: partition X from left to right so that every partition, but the last one, has 3 observations per regressor; for each partition, we estimate Y with the regressors in that partition using ordinary RR; retain the regressors with statistically significant t-ratios and the corresponding RR tuning parameter k, by partition; use the retained regressors and k values to re-estimate Y by GRR across all partitions, which yields b. Algorithmic efficacy is compared using 4 metrics by simulation, because the algorithm is mathematically intractable. Three metrics, with their probabilities of RR’s superiority over EN in parentheses, are: the proportion of true regressors discovered (99%); the squared distance, from the true coefficients, of the significant coefficients (86%); and the squared distance, from the true coefficients, of estimated coefficients that are both significant and true (74%). The fourth metric is the probability that none of the regressors discovered are true, which for RR and EN is 4% and 25%, respectively. This indicates the additional advantage RR has over the EN in terms of discovering causal regressors.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference71 articles.

1. Ridge Regression: Biased Estimation for Nonorthogonal Problems

2. A = B;Petkovsek,1996

3. Matrix Analysis for Statistics;Schott,2016

4. A Matrix Handbook for Statisticians;Seber,2007

5. Equivariance of ridge estimators through standardization, a note

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3