Investigation of the RF Sputtering Process and the Properties of Deposited Silicon Oxynitride Layers under Varying Reactive Gas Conditions

Author:

Hegedüs Nikolett,Balázsi CsabaORCID,Kolonits TamásORCID,Olasz DánielORCID,Sáfrán György,Serényi MiklósORCID,Balázsi KatalinORCID

Abstract

In a single process run, an amorphous silicon oxynitride layer was grown, which includes the entire transition from oxide to nitride. The variation of the optical properties and the thickness of the layer was characterized by Spectroscopic Ellipsometry (SE) measurements, while the elemental composition was investigated by Energy Dispersive Spectroscopy (EDS). It was revealed that the refractive index of the layer at 632.8 nm is tunable in the 1.48–1.89 range by varying the oxygen partial pressure in the chamber. From the data of the composition of the layer, the typical physical parameters of the process were determined by applying the Berg model valid for reactive sputtering. In our modelling, a new approach was introduced, where the metallic Si target sputtered with a uniform nitrogen and variable oxygen gas flow was considered as an oxygen gas-sputtered SiN target. The layer growth method used in the present work and the revealed correlations between sputtering parameters, layer composition and refractive index, enable both the achievement of the desired optical properties of silicon oxynitride layers and the production of thin films with gradient refractive index for technology applications.

Funder

Hungarian Scientific Research Fund

Ministry of Innovation and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3