The Two-Parts Step-by-Step Ionospheric Assimilation Based on Ground-Based/Spaceborne Observations and Its Verification

Author:

Fu NaifengORCID,Guo Peng,Wu Mengjie,Huang Yong,Hu Xiaogong,Hong Zhenjie

Abstract

This study introduced a Kalman filtering assimilation model that considers the DCB errors of GPS/LEO satellites and GNSS stations. The assimilation results and reliability were verified by various types of data, such as ionMap, ionosonde, ISR, and the EDP of ionPrf from COSMIC. The following analyses were carried out. Assimilating the measured ground-based/spaceborne ionospheric observation data from DOY 010, 2008 and DOY 089, 2012 revealed that the introduction of GPS/LEO satellite and GPS station DCB errors can effectively suppress the STEC observation errors caused by the single-layer hypothesis. Furthermore, the top of the ionosphere contributes 2.8 TECU (approximately 10–20% of the STEC) of electrons during the ionospheric quiet period, greatly influencing the ionospheric assimilation at altitudes of 100–800 km. The assimilation results also show that, after subtracting the influence of the top of the ionosphere, the ionospheric deviation during the quiet period improved from 1.645 TECU to 1.464 TECU; when the ionosphere was active, the standard deviation was improved from 4.408 TECU to 3.536 TECU. The IRI-Imp model introduced by Wu et al. and the IRI (2007) model were used as background fields to compare the effects of COSMIC occultation observation data on the ionospheric assimilation process. Upon comparison, the occultation data introduced by the improved model showed the greatest improvement in the vertical structure of the ionosphere; additionally, the assimilation process reused the horizontal structure information of the occultation data, and the assimilation result (IRI-Imp-Assi) was the most ideal. Due to the lack of an occultation data correction, the IRI2007 model was relatively more prone to errors. With the strategy of the IRI-Imp-Assi model, the introduction of occultation data caused a more significant reduction in the error between the assimilation model with the IRI model as the background field and the ionMap.

Funder

the National Science Foundation of China

the Natural Science Foundation of Ningbo

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3