Author:
Zhang Zhihua,Wang Xin,Lyu Daren
Abstract
Microwave occultation using centimeter and millimeter wave links between low Earth orbit (LEO) satellites provide a potential way to estimate the moist atmospheric profiles based on refraction and attenuation measurements, which is called the LEO-LEO microwave occultation (LMO) technique. It has not yet been implemented in orbit. In this paper, we analyzed the attenuation properties at different heights of centimeter and millimeter waves based on simulations. The observing capabilities with different frequency combinations at the X, K, and M bands were analyzed. The results show that LMO may improve the retrieval accuracy of bending angles above 35 km. By using several appropriate frequencies at the X+K+M band, water vapor profiles from the near-surface to the lower stratosphere (~24 km) can be obtained. When the M-band frequencies were added, the temperature retrieval accuracy does not change obviously, but the accuracy of water vapor retrieval can significantly improve above 15 km, especially at about 17–24 km, and the RMS errors decrease from over 20% to less 10%. For promoting the LMO mission in the real world, a frequency combination at the X+K band is proposed, which can provide the potential to observe the temperature profiles at about 2.5–50 km and water vapor profiles at about 2.5–15 km accurately under clear and cloudy conditions. This study demonstrates that LMO can greatly extend the capabilities of the radio occultation technique and improve our ability to measure the moist atmospheric profiles globally.
Funder
The Strategic Priority Research Program of Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences