Ionospheric TEC modeling using COSMIC-2 GNSS radio occultation and artificial neural networks over Egypt

Author:

Sherif Ahmed12ORCID,Rabah Mostafa1,Mousa Ashraf El-Kutb2,Zaki Ahmed3ORCID,Anwar Mohamed3,Sedeek Ahmed4

Affiliation:

1. Department of Civil Engineering, Benha Faculty of Engineering , Benha University , Benha , 13 512 , Egypt

2. Geodynamic Department , National Research Institute of Astronomy and Geophysics , Helwan , Cairo , 11421 , Egypt

3. Civil Engineering Department, Faculty of Engineering , Delta University for Science and Technology , Gamasa , 11152 , Egypt

4. Faculty of Petroleum and Mining Engineering , Suez University , Suez , 43534 , Egypt

Abstract

Abstract The ionospheric delay significantly impacts GNSS positioning accuracy. To address this, an Artificial Neural Network (ANN) was developed using the high-quality COSMIC-2 ionospheric profile dataset to predict the Total Electron Content (TEC). ANNs are adept at addressing both linear and nonlinear challenges. For this research, eight distinct ANNs were cultivated. These ANNs were designed with the following inputs Year, Month, Day, Hour, Latitude, and Longitude. Along with solar and geomagnetic parameters such as the F10.7 solar radio flux index, the Sunspot Number (SSN), the Kp index, and the ap index. The goal was to discern the most influential parameters on ionosphere prediction. After pinpointing these key parameters, an enhanced model utilizing a pioneering technique of a secondary ANN was employed with the main ANN to predict TEC values for events in 2023. The study’s findings indicate that solar parameters markedly enhance the model’s accuracy. Notably, the augmented model featuring a prelude secondary network achieved a stellar correlation coefficient of 0.99. Distributionally, 41 % of predictions aligned within the (−1≤ ΔTEC ≤1) TECU spectrum, 28 % nestled within the (1< ΔTEC ≤2) and (−2≤ ΔTEC <−1) TECU ambit, while a substantial 30 % spanned the broader (2< ΔTEC ≤5) and (−5≤ ΔTEC <−2) TECU range. In essence, this research underscores the potential of incorporating solar parameters and advanced neural network techniques to refine ionospheric delay predictions, thus boosting GNSS positioning precision.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3