Abstract
The Poisson maximum likelihood (PML) is used to estimate the coefficients of the Poisson regression model (PRM). Since the resulting estimators are sensitive to outliers, different studies have provided robust Poisson regression estimators to alleviate this problem. Additionally, the PML estimator is sensitive to multicollinearity. Therefore, several biased Poisson estimators have been provided to cope with this problem, such as the Poisson ridge estimator, Poisson Liu estimator, Poisson Kibria–Lukman estimator, and Poisson modified Kibria–Lukman estimator. Despite different Poisson biased regression estimators being proposed, there has been no analysis of the robust version of these estimators to deal with the two above-mentioned problems simultaneously, except for the robust Poisson ridge regression estimator, which we have extended by proposing three new robust Poisson one-parameter regression estimators, namely, the robust Poisson Liu (RPL), the robust Poisson Kibria–Lukman (RPKL), and the robust Poisson modified Kibria–Lukman (RPMKL). Theoretical comparisons and Monte Carlo simulations were conducted to show the proposed performance compared with the other estimators. The simulation results indicated that the proposed RPL, RPKL, and RPMKL estimators outperformed the other estimators in different scenarios, in cases where both problems existed. Finally, we analyzed two real datasets to confirm the results.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献