New Robust Estimators for Handling Multicollinearity and Outliers in the Poisson Model: Methods, Simulation and Applications

Author:

Dawoud IssamORCID,Awwad Fuad A.,Tag Eldin ElsayedORCID,Abonazel Mohamed R.ORCID

Abstract

The Poisson maximum likelihood (PML) is used to estimate the coefficients of the Poisson regression model (PRM). Since the resulting estimators are sensitive to outliers, different studies have provided robust Poisson regression estimators to alleviate this problem. Additionally, the PML estimator is sensitive to multicollinearity. Therefore, several biased Poisson estimators have been provided to cope with this problem, such as the Poisson ridge estimator, Poisson Liu estimator, Poisson Kibria–Lukman estimator, and Poisson modified Kibria–Lukman estimator. Despite different Poisson biased regression estimators being proposed, there has been no analysis of the robust version of these estimators to deal with the two above-mentioned problems simultaneously, except for the robust Poisson ridge regression estimator, which we have extended by proposing three new robust Poisson one-parameter regression estimators, namely, the robust Poisson Liu (RPL), the robust Poisson Kibria–Lukman (RPKL), and the robust Poisson modified Kibria–Lukman (RPMKL). Theoretical comparisons and Monte Carlo simulations were conducted to show the proposed performance compared with the other estimators. The simulation results indicated that the proposed RPL, RPKL, and RPMKL estimators outperformed the other estimators in different scenarios, in cases where both problems existed. Finally, we analyzed two real datasets to confirm the results.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3