Kibria–Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application

Author:

Alrweili HleilORCID

Abstract

The Poisson regression model (PRM) is a widely used statistical technique for analyzing count data. However, when explanatory variables in the model are correlated, the estimation of regression coefficients using the maximum likelihood estimator (MLE) can be compromised by multicollinearity. This phenomenon leads to inaccurate parameter estimates, inflated variance, and increased mean squared error (MSE). To address multicollinearity in PRM, we propose a novel Kibria–Lukman hybrid estimator. We evaluate the performance of our estimator through extensive Monte Carlo simulations, assessing its accuracy using mean absolute percentage errors (MAPE) and MSE. Furthermore, we provide empirical applications to illustrate the practical relevance of our proposed method. Our simulation results and empirical applications demonstrate the superiority of the proposed estimator.

Funder

Northern Border University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3