A New Effective Jackknifing Estimator in the Negative Binomial Regression Model

Author:

Koç Tuba1ORCID,Koç Haydar1ORCID

Affiliation:

1. Department of Statistics, Faculty of Science, Cankiri Karatekin University, Cankiri 18100, Turkey

Abstract

The negative binomial regression model is a widely adopted approach when dealing with dependent variables that consist of non-negative integers or counts. This model serves as an alternative regression technique for addressing issues related to overdispersion in count data. Typically, the maximum likelihood estimator is employed to estimate the parameters of the negative binomial regression model. However, the maximum likelihood estimator can be highly sensitive to multicollinearity, leading to unreliable results. To eliminate the adverse effects of multicollinearity in the negative binomial regression model, we propose the use of a jackknife version of the Kibria–Lukman estimator. In this study, we conducted a theoretical comparison between the proposed jackknife Kibria–Lukman negative binomial regression estimator and several existing estimators documented in the literature. To assess the performance of the proposed estimator, we conducted two simulation studies and performed a real data application. The results from both the simulation studies and the real data application consistently demonstrated that the proposed jackknife Kibria–Lukman negative binomial regression estimator outperforms other estimators.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3