An Arabidopsis Oxalyl-CoA Decarboxylase, AtOXC, Is Important for Oxalate Catabolism in Plants

Author:

Foster Justin,Cheng Ninghui,Paris Vincent,Wang Lingfei,Wang JinORCID,Wang Xiaoqiang,Nakata Paul A.

Abstract

Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well-studied enzyme capable of degrading oxalate, but not all plants possess this activity. Recently, acyl-activating enzyme 3 (AAE3), encoding an oxalyl-CoA synthetase, was identified in Arabidopsis. This enzyme has been proposed to catalyze the first step in an alternative pathway of oxalate degradation. Since this initial discovery, this enzyme and proposed pathway have been found to be important to other plants and yeast as well. In this study, we identify, in Arabidopsis, an oxalyl-CoA decarboxylase (AtOXC) that is capable of catalyzing the second step in this proposed pathway of oxalate catabolism. This enzyme breaks down oxalyl-CoA, the product of AtAAE3, into formyl-CoA and CO2. AtOXC:GFP localization suggested that this enzyme functions within the cytosol of the cell. An Atoxc knock-down mutant showed a reduction in the ability to degrade oxalate into CO2. This reduction in AtOXC activity resulted in an increase in the accumulation of oxalate and the enzyme substrate, oxalyl-CoA. Size exclusion studies suggest that the enzyme functions as a dimer. Computer modeling of the AtOXC enzyme structure identified amino acids of predicted importance in co-factor binding and catalysis. Overall, these results suggest that AtOXC catalyzes the second step in this alternative pathway of oxalate catabolism.

Funder

Agricultural Research Service

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference51 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3