Disruption of the Arabidopsis Acyl-Activating Enzyme 3 Impairs Seed Coat Mucilage Accumulation and Seed Germination

Author:

Cheng Ninghui1ORCID,Nakata Paul A.1ORCID

Affiliation:

1. USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, USA

Abstract

The Acyl-activating enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA as the first step in the CoA-dependent pathway of oxalate catabolism. Although the role of this enzyme in oxalate catabolism has been established, its biological roles in plant growth and development are less understood. As a step toward gaining a better understanding of these biological roles, we report here a characterization of the Arabidopsis thaliana aae3 (Ataae3) seed mucilage phenotype. Ruthidium red (RR) staining of Ataae3 and wild type (WT) seeds suggested that the observed reduction in Ataae3 germination may be attributable, at least in part, to a decrease in seed mucilage accumulation. Quantitative RT-PCR analysis revealed that the expression of selected mucilage regulatory transcription factors, as well as of biosynthetic and extrusion genes, was significantly down-regulated in the Ataae3 seeds. Mucilage accumulation in seeds from an engineered oxalate-accumulating Arabidopsis and Atoxc mutant, blocked in the second step of the CoA-dependent pathway of oxalate catabolism, were found to be similar to WT. These findings suggest that elevated tissue oxalate concentrations and loss of the oxalate catabolism pathway downstream of AAE3 were not responsible for the reduced Ataae3 seed germination and mucilage phenotypes. Overall, our findings unveil the presence of regulatory interplay between AAE3 and transcriptional control of mucilage gene expression.

Funder

U.S. Department of Agriculture, Agricultural Research Service

National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3