Physical Activation of Waste-Derived Materials for Biogas Cleaning

Author:

Papurello DavideORCID,Santarelli Massimo,Fiorilli Sonia

Abstract

Biogas produced from biomass is carbon neutral. In fact, the carbon feedstock of biomass is converted into gas phase. Biogas use in high efficient energy systems, such as Solid Oxide Fuel Cells is a viable choice. One of the most important drawbacks for such systems is related to the interaction between trace compounds and anode section. Gas cleaning through physical removal mechanisms is the simplest and cheapest method adopted in the literature. Coupled with this solution, the recovery of waste materials is an efficient application of the circular economy approach. In this work, a physical activation process was investigated experimentally for waste-derived materials at a temperature of 700 °C. The removal of H2S was considered as the most abundant trace compound. Activated biochar showed an adsorption capacity comparable to commercial sorbents, while the performance of ashes are still too poor. An important parameter to be considered is the biogas humidity content that enters in competition with trace compounds that must be removed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3